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We study a simple and exactly solvable model for the generation of random satisfiability problems. These
consist ofyN random boolean constraints which are to be satisfied simultaneoudlyldyical variables. In
statistical-mechanics language, the considered model can be seen as gebipitechodel at zero temperature.

While such problems become extraordinarily hard to solve by local search methods in a large region of the
parameter space, still at least one solution may be superimposed by construction. The statistical properties of
the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial
time by a simple global solution method. The geometrical and topological structures responsible for dynamic
and static phase transitions as well as for the onset of computational complexity in the local search method are
thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the
critical scaling behavior.
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[. INTRODUCTION i.e., when problems are critically constrained. This phenom-
enon is know as the easy-hard transition.

Complexity theory[ 1], as arising from Cook’s theorem of Randomized search algorithms provide efficient heuristics

1971[2], deals with the issue of classifying combinatorial for quickly finding solutions provided they exist. At the
optimization problems according to the computational cosphase boundary, however, there appears an exponential criti-
required for their solution. The hard problems are grouped ircal slowing down which makes the search inefficient for any
a class named NP, where NP stands for “non-deterministipractical purpose. Understanding the behavior of search pro-
polynomial time.” These problems are such that a potentiatesses at the easy-hard transition point constitutes an impor-
solution can be checked rapidly whereas finding one solutiomant theoretical challenge which can be viewed as the prob-
may require a time growing exponentially with system sizelem of building a generalized off-equilibrium theory for
in the worst case. In turn, the hardest problems in NP belongtochastic processes which do not satisfy detailed balance.
to a subclass called NP-complete which is at the root ofNo static probability measure describing the asymptotic sta-
computational complexity. The completeness property refersistical behavior of the search processes is guaranteed to ex-
to the fact that if an efficient algorithm for solving just one of ist. Moreover, the hardest random instances of combinatorial
these problems could be found, then one would have an ebptimization problems provide a natural test bed for the op-
ficient algorithm for solving all problems in NP. By now, a timization of heuristic search algorithms which are widely
huge number of NP-complete problems have been identifiedsed in practice.
[1], and the lack of an efficient algorithm corroborates the How to generate hard and solvable instances is far from
widespread conjecture that no such algorithm exists, or morebvious and very few examples of such generators are
formally that NP£P where P includes all problems solvable known[9]. In most cases, e.g., in the random Boolean satis-
in polynomial time. fiability problem (K-SAT [6,7,10), for a short definition see

Complexity theory is based on a worst-case analysis anRef.[11], hard instances can only be found in a very narrow
therefore does not depend on the properties of the particulaegion of the parameters space. In this region the probability
instances of the problems under consideration. In order tthat a random instance of the problem has no solution at all
deepen the understanding of typical-case complexity rathds finite. Then, heuristi¢incomplete search algorithms have
than the worst-case one and to improve and test algorithmso way to disentangle, in a given finite time, the unsatisfiable
for real world applications, computer scientists have recentlynstances, from those which are simply very hard to solve.
focused their attention on the study of random instances of In this paper, we shall discuss a very simple and exactly
hard computational problems, seeking for a link between thgolvable model for the generation of random combinatorial
onset of computational complexity and some intringie.,  problems. On one hand, these become extraordinarily hard to
algorithm independentproperties of the model. Analytical solve by local search methods in a large region of the param-
and numerical results have accumulaf8e-8] showing that eter space and yet at least one solution may be superimposed
the computationally hard instances appear with a significariby construction. On the other hand, the model may be solved
probability only when generated near “phase boundaries,’in polynomial time by a simple global method and therefore

belongs to the clasB.
At variance with respect to the famous random 2-SAT

*Electronic address: riccife@ictp.trieste.it problem[12,10, which is inP and can be solved efficiently
"Electronic address: weigt@theorie.physik.uni-goettingen.de by local search method43] also at the phase boundary, the
*Electronic address: zecchina@ictp.trieste. it model we consider undergoes an easy-hard transition very
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similar (even harderto the one observed in 3-SAT as far as dently drawn random variablesi=+1, and defineJ;j
local search methods are concerned. However, the exaete;sjs for all {i,j,k} € E. For this choice, CNF formula
mapping of the model on a minimization problem over uni-(2) is satisfied by{x;|x;=+1if g;=+1, x;=0 if &=
form random hypergraphs makes the problem analytically-1}. As we shall discuss in great detail, these formulas pro-
tractable. It is also solvable in polynomial time by a globalvide a uniform ensemble of hard satisfiable instances for lo-
method which allows for the numerical study of very large cal search methods. We refer to this version of the model as
systems. Therefore some of the open questions which arishe satisfiable hSAT. Indeed, the random signg;gfcan be
the the analysis of 3-SAT and which are common to theremoved in this satisfiable case by negating all Boolean vari-
present model can be answered exactly. ablesx; associated to negativg . The resulting model has
In the context of statistical physics the model provides ajj=+1 for all {i,j,k} e E, and the forced satisfying solu-
simple model for the glass transition, in which the crystallinetion isx;=1, Vi=1, ... N. The use of thde;} is a way of
state can be view as the superimposed solution and the strugiding the latter solution by a random gauge transformation
ture of the excited states is responsible for the off-without changing the properties of the model. The impossi-
equilibrium behavior and the associated structural glass trarility of efficiently inverting the gauge transformation by
sition. These aspects will be the subject of a forthcomingocal methods is a consequence of the branching process
paper. The limit of infinite connectivity provides one of the arising from the presence d€=3 variables in each con-
most studied models in the context of spin glass theory, segiraint. For anyK >3 the same result would hold whereas for
for instance[14-19. K=2 the problem trivializes.
The hSAT model can be easily described as a minimiza-
Il. MODEL tion problem of a cost-energy function over a random hyper-
graph. Given a random hypergragh v=(V,E), whereV is
he set ofN vertices ancE is the set oM hyperedges joining
triples of vertices, the energy function to be minimized reads

In order to unveil the different aspects of the model, to b
referred to as hyper-SAThSAT), we give explicitly its defi-
nition both as a satisfiability problem and as a minimization
problem over hypergraphs.

Here we discuss the hSAT model wikh=3 variables per H,[S]=M — E JiSS S, 3)
constraint, which can be viewed as a perfectly balanced ver- (ke T
sion of the famous random 3-SAT problem. The cKse2
does not present any interesting computational features as f@gfhere each vertex bears a binary “spin” variableS =
as hardness is concerned because it can be solved efficiently; anq the weightd;;, associated to the random bonds can
both by local and global methods. GeneralizationKte3  pe ejther+1 at random, in the so-called frustrated case, or
are straightforward. . simply equal to 1 in the unfrustrated model.

Given a set oN Boolean variable$x;=0,1}i-; n,We Once the mappin@ =1 if ;=1 andS=—1 if x;=0 is
construct an instance of 3-hSAT as follows. First we defingygiaplished, one can easily notice that the energy function in
the following elementary constraintsi-clauses sets with gq (3) simply counts twice the number of violated clauses in

50% satisfying assignments the previously defined CNF formulas with the same set of
C(ijk| +1) = (/% V%) A X\ X A X X\ Xi) J's. The frustrated and the unfrustrated cases correspond to

o the hSAT and to the satisfiable hSAT formulas, respectively.

ACAVS AV NE The computational issue consists in finding a configura-

Clijk|-1)= XA /X NN tion of spin variables which minimizeBl. If all the terms
(i] )= VXV X AV X X A XN X5\ %) JiikS'S;S¢ appearing in the energy are simultaneously maxi-
N - mized (“satisfied”) the energy vanishes. This is always pos-
ANXNVXNX0, _ , @ sible in the unfrustrated case just by settiig 1, Vi. In the
where/\ and\/ stand for the logicahND andOR operations,  frstrated case there exist a critical value of the average con-
respectively, and the overbar is the logical negation. Then,ecyivity above which the various terms start to be in con-
by randomly choosing a sétof M triples{i,j,k} among the et that is frustration becomes effective in the model. In
N possible |nd|c§s anW¥ associated unbiased and indepen-y5nqom hypergraphs the control parameter is the average
dent r_and_om va_nablgi;”k:tl, we construct a Boolean ex- density of bonds;y=M/N (or, for the CNF formula, the
pression in conjunctive normal for¢CNF) as density of clausest=41y). For sufficiently small densities,
F= A C(ijliijk). @) Lhe graph consists. of many small connected c_Iusters of size
(K< E p toO(InN). If y increases up to the percolation valyg
=1/6, there appears a giant cluster containing a finite frac-
A logical assignment of théx;}s satisfying all clauses, that tion of the N sites in the limit of largeN. However, this
is evaluatingF to true, is called a solution of the 3-hSAT cluster can alsa priori have a treelike structure, for which
problem. If no such assignment exissis said to be unsat- the randomness of the couplingg = =1 can be eliminated
isfiable. by a proper gauge transformatio,— =S/, of the spin
A slightly different choice of;j, allows one to construct variables. As we shall see, there exist two other thresholds of
hSAT formulas which are random but guaranteed to be sathe bond density at which more complicated and interesting
isfiable. To every Boolean variable we associate independynamical and structural changes take place.
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In spite of apparent similarities, hSAT and the randomstuck at least at this threshold. Randomized algorithms may
Boolean satisfiability problemK-SAT [11]) differ in some  escape from these minima, but they undergo a slowing down
basic aspects. from an exponentially fast convergence to a polynomially

In K-SAT the fluctuations of the frequencies of appear-slow one, i.e., atyy the typical time for finding a solution
ance of the variables in the clauses lead to both single andiverges as a power of the number of variables. The dynami-
two body interactions in the associated energy funci®@]  cal transition aty; seems to be accompanied by a dynamical
which force the minima in some specific random directionsglassy transition due to replica symmetry breakiRSB)
and which rule out the existence of a purely dynamicaleffects connected with the appearance of an exponential
threshold(see below Algorithms may take advantage of number of local minima. An approximate variational calcu-
such information and both heuristic as well as complete altation (see Ref[25] for a discussion on the methpuhvolv-
gorithms show a performance which indeed depends on thieg RSB gives yjkrsg=0.83 which is in good agreement
criterion used to fix the variables. For example, rigorousyith the value ofy, where local minima appear.
lower bounds to the critical threshold have been improved The second transition appears @t=0.918 and corre-
recently by exploiting this opportunity in a simple tractable sponds to the so-called SAT/UNSAT transitidbelow vy,
way [21]. On the same footing, the efficiency of the mostthe typical problem is satisfiable whereas aboxeit be-
popular heuristic and complete search algorithms, namelgomes unsatisfiableAt this point the structure of the global
walk-sat[22] andTABLEAU [23], is again based on strategies energy minima changes abruptly. The ground states have
which exploit the above structure. Note that the above imstrictly positive energy, thus no satisfying assignments for
provements cannot be applied to the hSAT model where forthe hSAT formula exist any more. While the number of these
mulas are completely balanced. configurations is always exponentially largke ground state

Moreover, inK-SAT the mapping of the problem over entropy is always finite at y. a finite fraction of the vari-
directed random graphs is rather involved and the exact angples, the so-called backbone component, becomes totally
lytical solution is still lacking, while in hSAT the connection constraint, i.e., the backbone variables take the same value in
to random hypergraphs is clear and makes the analysis tragti minima [26]. An important difference of the SAT/
table. UNSAT transition in hSAT compared t§-SAT [25] is the

Finally, restriction ofK-SAT to satisfiable instancg$or  pgnexistence of any precursor. FeK v, and largeN, all
instance, by selecting at random clauses which are SatiSﬁ%riabIesSi take equally often the values1 and—1 in the
by a previously fixed assignment of variable®es not pro- ground statesthey have zero local magnetizatioreven
vide a uniform ensemble of hard satisfiable problems eveg,gse which become backbone elements wheis reached
when restricted to local search meth¢ad]. by adding new 4-clauses sets. The lack of any precursor

Given the mapping over random hypergraphs, the satisficomes from the nonexistence of single- or two-body interac-
ability problem for hSAT can be solved @(N%) steps by tions in Eq.(3).
simply noticing that the problem of satisfying all constrains  The unfrustrated or satisfiable hRSAT problem has by con-
is nothing but the problem of solving an associated lineaktryction at least one solution which we find to be superim-
system modulo 2, i.e., iGF[2]. Upon introducing the two  posed without affecting the statistical features of the model
sets of binary variablega;} e {0,4" and {bj;}e{0,3"  for y<y, in the limit of largeN, including the dynamical
such that ¢ 1)%=S; and (~ 1)"ik=J;, the hSAT decision transition aty,=0.818. It is impossible to get any informa-
problem becomes simply the problem of determining the extjon on the superimposed solution by looking at the full so-
istence of a solution iGF[ 2] to the random linear system |ytion space because it is completely hidden by the exponen-
a;+a;+a,=b;j (mod 2), withijk running over all triples.  tja] number of ground states. Randomly chosen satisfying

Finally, we notice that in the highy UNSAT (or frus-  assignments do not show any correlation. At exactly the
trated region the optimization problem of minimizing the samey,=0.918 as in the frustrated model, there appears a
number of violated Constl’ains, the so-called MAX'hSAT, iStransition from a SAT phase with exponentia”y many unbi-
indeed computationally very hard both for complete and in-ased solutions to another SAT phase where the solutions are
complete algorithms and no global method for findingstrongly concentrated around the superimposed solution. The

ground states is available. latter one is now hidden by the presence of exponentially
many local energy minima with positive cost. These minima
Ill. OUTLINE OF MAIN RESULTS have exactly the statistical properties of the global minima of

the corresponding frustrated hSAT problem, that is the hSAT

For the sake of clarity, we anticipate here the main resultproblem defined over the same hypergraph but with random-
leaving for the following sections a thorough discussion ofized signs of the couplingd;; . More specifically, the en-
the analytical and numerical studies. ergy, the entropy, and the backbone component size coin-

The frustrated hSAT model presents two clear transitionscide. Due to their finite entropy, an algorithm will thus hit
The first one appears at;=0.818 and it is of purely dy- many of these local minima before it reaches the satisfying
namical nature. There the typical formula still remains satisground state. As one can see from Fig. 5, finding this solu-
fiable with probability one, but an exponential number oftion by backtracking, e.g., with the Davis—PutnébP) pro-
local energy minima appear at positive energies. Determineedure[27], is nevertheless easier than proving the unsatis-
istic algorithms, like greedy search or zero temperature dyfiability of hSAT (or identifying ground states in the
namics, try to decrease the energy in every step and thus gitstrated version This results stems from the missing in-
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formation on the true ground state energy of hSAT aboverhe averaged term in Ed5) depends on th&@xXN spins
Y- The solution time is, however, found to be clearly expo-only through the 2 occupation fractions() labeled by the

n%nnal n b.]?th cases. IE| th?}? h”C (;egf?’.thf mode][ pr;)- vectorsa with n binary components;()N equals the num-
Vides a uniiorm ensemble of har instances for local, o, ¢ |apelsi such thatS*= o, Va=1, ... n. Therefore

methods which can be used to test and optimize algorithmz%he final expression of thath moment ofZ to the leading

_ order inN (i.e., by resorting to a saddle-point integration
IV. STATISTICAL MECHANICS ANALYSIS: can be written as((Z”))zequ\lF[c]) where F[c] is the

THE REPLICA RESULTS maximum over all possible(a)’s of the functional[28]
In our analytical approach, we exploit the well-known
analogies between combinatorial optimization problems and
statistical mechanics. In both cases, the system is character- — gF[c]=— 7(1+,3n)_2 c(&)ln c(&)
ized by some cost-energy function, as it is given, e.g., by Eq. o
(3) for hSAT. In equilibrium statistical mechanics, any con-

figuration S={S};_1  n is realized with probability +y > c(&)c(ﬁ)c(;—)exp( 5>, a'apaTa>_
exp[—BH[S]|}/Z where B=1/T is the inverse temperature o.p,7 a
and Z the partition function. If the temperature is lowered, (6)

the probability becomes more and more concentrated on the
global energy minima and finally, for=0, only the ground

states keep nonzero weights. The saddle-point equatiaf( — BF)/dc(o)=A—1 reads
In order to compute the average free energy, we resort to

the replica symmetri€RS) functional replica method devel-

oped for diluted spin glasses which is known to provide ex- c(&)zexp{ —A+3y>, c(ﬁ)c(?)exr{ B>, (Tapara) J

act results for ferromagnetic models: To circumvent the dif- p.7 a

ficulty of computing the average value of Znwe compute (7)
the nth moment ofZ for integer-valuedn and perform an

analytical continuation to reah to exploit the identity \yhere the Lagrange multipliek enforces the normalization
e o o e s o . COTSTANE (7)1, and goes 19 o -0, I €,
: . . one may easily identify two terms, one model dependent and
ration and averaging over the disord@s] Z . o
the other[ —=;c(o)Inc(o)] simply describing the degen-
n eracy(the so-called combinatorial entropwith which each
(ZM)= > <<exp< » HJ[S"‘]> > > (4)  term of the generating function appears given the represen-
SE a=1 tation in terms of the occupation fractions. In the limit of
ejnterestTHO and in the replica symmetric subspace, the
freezing of the spin variables is properly described by
a rescaling of the local magnetizations of the fomm

=tanh(Bh). The probability distributionP(h) is therefore
introduced through the generating functional

which in turn may be viewed as a generating function in th
variable exp{p).

In order to compute the expectation values that ap
pear in Eq. (4), one notices that each single term
exp(—B=1_;H,[S?]) factorizes over the sets of different
triples of indices due to the absence of any correlation in the
probability distribution of theJj;, . It follows B eﬁhz o?
(o) = f dh P :

(h)—[2 costi g T ®
(z= X exp—pmNn—N
S .S ..., 4
whereh is nothing but an effective field in which the spins
(5) are immersedc depends onr only via s=X_,0?. In this

representation, the free-energy reads

~ BFLP(N) 1= | dhydndhsP(hy) P(h,)P(hy

i costiB(h;+h,)][efMs+ e~ 28 ANs]+ 2 costi B(h, —hy) J[e ANs+ e~ 287 Ahs]
n [2 coslifh,)][2 costigh,)I[2 costighy) ]

+jdtheihKP (K)[1=In Pe1(K)]In[2 costigh)] 9
o ET FT '
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wherePg1(K) is the Fourier transform dP(h). The associ- so Eq.(15) follows. As an additional result of replica theory,

ated saddle-point equation reads we derive the ground-state entropy
1
f dh P(h)eﬁhszexp{—3y+3yf dhydh,P(h,) s(y)= lim SInNgs=In(2)(p{(1-In p{)
N— o
_ —(1—pn03
><P<hz>e(h1,h2>], (10 A== D7D (16
For small y, Eqg. (15) has only the trivial solutiorp(yo)
where =1 where all variables are unfrozen, i.s,=0 for alli. No

internal structure is found in the set of satisfying assignments
and, choosing randomly two of them, they have Hamming
distance 0.81+O(y/N). To leading order inN, the M
(11) 4-clauses sets act independently, each dividing the number of
satisfying assignments by two, i.6\gs=2"*"?. This is a

In the case of satisfiable hSAT, @t~ (T=0) and inthe clear sign that the structure of the hypergraph is still treelike.
version having no random gaugel;(=-+1, V{i,j,k} At y4=0.818, a new solution of Eq15) appears discon-
e E), the spins turn out to be subject to an effective localtinuously, having a fraction (% p(yo))=0.712 of completely
field h which fluctuates from site to site according to the magnetized variables. This transition can be seen as a perco-

costi B(hy+hy)1+e 2Pcoshi B(h; —hy)]| ™

cosh B(h;—hy)]+e ?Fcost B(hy+h,)]

G(hlth):(

following simple probability distribution lation transition of fully magnetized triples of connected
variables. The entropy of this solution remains, however,
_ () st s smaller than the entropy-1y of the paramagnetic solution,
P(h)_Zo py 6(h=7) (12 thus the total solution space is still correctly described by
m;=0 for alli=1, ... N. The appearance of the new solu-
with the saddle-point conditions tion signals, however, a structural change in the set of solu-
tions which breaks into an exponential number of clusters.
% L (1=pM)Zp{» The cluster containing the imposed solutigr= +1 is de-
Py =@37) D scribed by the new metastable solution.
(13) Anothe_r important differencg to the low-phase is an
p(y°)=exp{—3y(1— p(70))2}_ exponential number of local minima of the energy function

(3) showing up atyy. These have positive energies, and the

The above structure is not surprising for a ferromagneticrresponding logical assignments do not satisfy the hSAT
model since p(O) is nothing but the fraction of sites which formula. Algorithms which decrease the energy in every time
Y

have nonvanishing field and are therefore totally magnetize tfp bb?/ dloncarlni vana:bk? cgangljesr,ith?r.]g., z?rol—rt:]am?erartulre
The saddle-point equations simplify once rewritten in terms auber dynamics or greedy algo S, get aimost surely

the probability distributiorP(m) of the local magnetizations trtapzpefd |n>these statgs a_nd (;Jo |n0t .];'r?d a zero-energy gf]round
m;=0,1 which takes the particularly simple form state fory=yq. Randomized aigorithms may escape irom
these minima, but as found numerically, this causes a poly-

P(m)=p@s. o+ (1-p©)s. ;. 14 nomial_ slowing down.
(m) Py Omo ( Py ) Oma (14 By increasingy aboveyy, the number of ground-state
Thus a fraction 1 clusters decreases further. A4¢=0.918 all but one ground-

_p(VO) of all logical variables is frozen te-1 in all ground state clusters disappear, and the nontrivial solution of Eq.

states, whereas the others take both truth values with th 15) becomes the stable one. So only the cluster including

¢ The self stent i Vin E the imposed solution survives, it still contain8%? solu-
same frequency. The sefi-consistent equa |0rpf§ N EQ. tions, but 88.3% of all variables are fixed tol, thus form-
(13) can be rewritten as

ing the backbone which appears discontinuously. As is
o c known from Ref[7], the existence of an extensive backbone
(0)_ E e—ay(37’) 1—(1—p©@)21¢ 15 is closely related to the exponential computational hardness
Py T [1=(1-p,")°T" (15 " :
¢=0 c of a problem. The remaining 11.7% of unfrozen variables
change their values from ground state to ground state. They
and can be justified by simple probabilistic arguments: Aare contained in small disconnected components or dangling
variable is frozen if and only if it is contained in at least oneends of the hypergraph.
hyperedg€i,j,k} € E where also the two neighbors are fro-  The behavior of frustrated hSAT is similar, as given both
zen. Thus a variable is unfrozem; =0, if and only if every by numerical analysis and by RS or variational RSB calcu-
adjacent hyperedge contains at least one more unfrozen vatations. We find that the solutior;=+1 (and its corre-
able. For a spin of connectivity, this happens according to sponding clusterin satisfiable hSAT are just superimposed
Eq. (14) with probability [1—(1— p(yo))z]c. The average to the solution structure of random hSAT. Thus the statistical
over the Poisson-distributiog 3¥(3y)¢/c! of connectivities  properties of the solutions do not change fox y., includ-
c results in the total probability for a variable to be unfrozen,ing also the clustering of solutions aboyg. At y.=0.918

where é. . is the Kronecker symbol.
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the model undergoes a SAT/UNSAT transition, and the so-
lution entropy jumps from 0.082 down to minus infinity. The
variational RSB calculation gives a value for the dynamical
critical connectivityyyrsg=0.83 which is close to the exact
value 0.818. This result gives evidence for the validity of the
variational approach in the region where local minima first
appear, i.e., where the result does not depend strongly on th
specific functional ansatz made for the RSB probability dis-
tributions. For the SAT/UNSAT static transition the predic-
tions of the variational RSB analysis can be strongly affected
by the restriction of the functional space which does not
necessarily match the geometrical struct(chustering of

the space of solution. However, in the case of hSAT the

results are still in good agreement, we fipffrgg=0.935.

V. CONNECTION WITH GRAPH THEORY

In the hSAT model, we are able to extract exact results, FiG. 1. The simplest hyperloofleft) and the hyperloop with
without the need of RSB, by identifying the topological one totally constrained vertex of odd degxeght) [30]. Triangles
structures in the underlying hypergraph which are responrepresent the interaction between the three spins located at the ver-
sible of the SAT/UNSAT transitior{or of frustration and tices. The black dot represents the constrained spin residing on the
glassiness The presencéor the absengeof such topologi-  odd-degree vertex of the hyperloop.
cal structures in the hypergraph drastically changes the sta-
tistical mechanical properties of the model. The different |n frustrated hSAT the couplings are randomly fixed to
phase transitions can be viewed as different kinds of perco+1 gng, consequently, the first product in E#j7) is equal
lation in the random graph theory langug@e). to —1 with probability 1/2. Then we can conclude that as

We have already seen that the formation of a locallysoon as one hyperloop arises in the hypergraph half the for-
stable ferromagnetic state in unfrustrated hSAT %t  mulas become unsatisfiable. In general, given a hypergraph
=0.818 can be understood in term of percolation argumentsyith N,,, hyperloops, the fraction of SAT formuldwith that
The same arguments reveal that at many metastables given hypergraphis 2~ Nni. Still one needs to average this
states appear in both versions of the model, giving rise to gaction over the random hypergraph in order to obtain the
dynamical transition. right fraction of SAT formulas.

In order to understand what happens at the critical point \we have numerically found that at the critical valyg
. We need to introduce the notion of hyperloops, that is the= 9,918 the percolation of hyperloops takes place, that is, in
most natural generalization of the usual loop to hypergraphge largeN limit, the average number of hyperloops,(y)
whith multivertex links. Given a random gra@=(V,E),  is zero for y<y, and O(N) for y>y.. This is the direct
whereV is the set of vertices ariis the set ofhypedlinks,  explanation of the SAT/UNSAT transition in terms of hyper-
a hyperloop can be defined as a nonzero séhypeplinks, graph topology.

RCE, such that the degree of the subgrapk (V,R) is In the unfrustrated model;;,=1 and Eq.(17) is always
even, i.e., every 'vertex belongs to an even number ofatisfied. However, the mean number of hyperlobipg y)
(hypeplinks (including zer9. In Fig. 1 (left) we show the s related to the entropy of satisfying assignments through
smallest hyperloop in &=3 random hypergraph. Note that s(7)=[1— y+N,(y)/N]In 2. The derivation of this equal-

in random hypergraph typical hyperloops are very large angly is straightforward if we consider the linear system
the one shown in Fig. ﬂeft)_ is extremely rare foN large.  modulo 2 ofM equations inN variables, introduced at the

In a similar way we can identify those vertices which areenq of Sec. II. In terms of the linear system hyperloops rep-
totally constrained. A set dhypeplinks, TVCE, constrains  resent combinations of equations giving a trivial deeg.,
completely the spin at siteif in the subgraph¥=(V,T")  0=0) which does not fix any degree of freedom. The en-
the vertexi has an odd degree and the remaining vertices afropy, which is proportional to the number of degree of free-
even one. In Fig. 1right) we show the smallest of such gom is then given byB(y) = In(2)[N—M—N, (1) N.

structures. . . . Considering now a totally constrained spin at $itend a

In a zero-energy configuratidSAT assignmentwe have  SAT assignment, we have that
SiS;S«=Jijx,V{i.j.k} € E. Then, given any hyperlooR, we
conclude
AL gwe= Il 'ssse=s. @9
- Jijk: - H SiSjSk: 1, (17) {i,j.kteT {i,i.kteT

{i,j,k}eR {i,j,k}eR
Then, in every SAT formula, hyperloops with one odd-

where the second equality comes from the fact that in th@legree vertexto be denoted by the labkl— 1) fix one spin
second product every spin appears an even number of timegariable to a complicated function of the couplings. We have
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numerically checked, that such structures ariseyat like 1
hyperloops, but in a discontinuous way. 09 |
In satisfiable hSAT we havé;; =1, so that any inde- 08 | T
pendent hyperloop with one odd degree vertex fixes one
spin to 1[31]. Then the magnetization of the model is equal § %7 [ o N N=096
to the mean density of such loopsn(y)=pn_1(7) £ o6 ' N=8192 ——
=Np—1(v)/N. Because of the discontinuous nature E 05 | x:;gﬁ T
of the transition the limits Iingayc— pr-1(»)=0 and = el 0.08 - N=1¢
Iimyﬁyg pni—1(y)=m.=0.883 do not coincide. S ozl ool
In frustrated hSAT Eq(18) fixes the variables belonging =
to the backbone. Then one would be tempted to relate the 021 0 i
backbone size to the densipy,_1(7y) of hyperloops with 01r 06 07 08 09 1
one frozen verteXwhich is trug and to estimate the back- P : : : s . e T
bone size at the critical point to be 88.3%shich is not true. 08 082 084 08 088 09 092 094 096 098 1
Indeed at the critical point there is a coexistence of SAT and v
UNSAT formulas(see the next sectiornd fory>y. all the FIG. 2. The probability that a formula is SAT as a function of

formulas become UNSAT in the largelimit. Then Eq.(18)  the coupling density. Inset: The energy reached by a deterministic

can be applied only f015’_< ¥c where the densityp, -1 §0€S  ryle becomes different from zero at the dynamical critical point.
to zero wherN—o. While the appearance of the backbone

is necessarily related to the presence of hyperloops with frog, ., harriers. We can easily detect the dynamical transition
zen vertices, the estimation of its size is nontrivial. A veryy,

g . . " P/ adopting the following deterministic algorithm as a probe
rough estimate can be obtained assuming that at the critical, 4 by checking where it stops converging to solutions. The

point half the form_ulas are SA(I’accprding to the numerical algorithm exploits the only local source of correlations
results Op;esan'\tled n fthe nlext se(cj:)uarmd fthat the backbonde among variables, that is, fluctuations in connectivity. At each
size is 0 for UNSAT formulas and 0.88 for SAT ones. Under o the algorithm chooses the variable with the highest con-

these Vﬁ% crude hypothesis the backbone size would bgetivity, fixes its value at random, and it simplifies the for-
0.44, which in not too far from the numerical res(dee the mula (“unit clause propagation’[27]). As can been seen in

next section the inset of Fig. 2 the energy reached running the above
process on very large formulad\ € 107,10°,10%) starts to
deviate from zero at a value which is highly compatible with
the analytical predictioryy=0.818. Unfortunately the math-
We have performed extensive numerical experiments oematical analysis of this kind of algorithm appears to be
both versions of hSAT in order to confirm analytical predic- beyond our present skills due to the correlations induced into
tions and to compute quantities which are not accessible an#le simplified formulas by the particular choice of variables.
lytically. Beside theGF[2] polynomial method, we have For a simple randoniconnectivity independentchoice of
also used two local algorithms, namely the Davis-Putnanthe variable the algorithm can be analyzed along the lines of
(DP) complete backtrack seardi27] and the incomplete Ref.[32] and a convergence can be proven upyte2/3,
walk-SAT randomized heuristic sear¢@2], to check the which is also a rigorous lower bound to the true critical den-
hardness of the problem for local search. The existence of &ity y.. A rigorous upper bound is easily established by
least one solution in the satisfiable hSAT allowed us to rumoticing that the probability for the satisfiability of a formula
walk-SAT in the whole range of, the halting criterion be- at fixed y is bounded by the number of satisfying assign-
ing always finding a SAT assignment. ments, averaged over all formulas of lengtN. It follows
The first set of results concerns the numerical determinay.<2 In 2 (which is the so-called annealed bound known in
tions of the critical points of hSAT obtained by the polyno- the statistical mechanics of disordered media
mial method over large samples. We have performed standard finite size scaling analysis in
For the frustrated case, the fraction of satisfiable instancearder to determine the size of the critical windewyN) and
drops down to zero af,=0.918. In Fig. 2 we show this the » exponent defined byw(N)=N~" for large N.
fraction as a function ofy, which has been obtained, for any  In a growing random hypergraph as soon as the first hy-
size N, counting the number of hyperloops in“@ifferent  perloop arises the fraction of SAT formulas drops down to
random hypergraphs. For any given random hypergraph th@.5. We have measured the megrvalue where this event
fraction of SAT formulas is given by 2Vn, whereN,,(y) is  takes placey(N). Such value scales ag(N)—y.<N~1,
the number of hyperloops. The same set of simulations rune., its critical exponent iz=1 as expected for a discon-
on the satisfiable hSAT show that at exactly the samethe  tinuous transitionsee lower inset in Fig.)3
model undergoes a discontinuous ferromagnetic transition. However in the model there is also another source of pure
At y4=0.818 a dynamical transition takes place in bothstatistical(not critica) fluctuations[33]. These fluctuations
versions of hSAT. There appears an exponentially larggome from the fact that almost every formula can be modi-
number of positive energy local minima strongly affecting fied by the additior{or deletion of order/N clauses without
nonrandomized dynamics, which is not able to overcome enchanging its satisfiability. Therefore in the lafydimit these

VI. NUMERICAL RESULTS
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FIG. 3. Scaling function for the SAT probability. Lower inset: ~ FIG. 4. The lowest lines are the analytical expressions for the
The v value where the first hypeﬂoop arises Sca|e$\jéé. Upper entropy of the unfrustrated model. The numerical estimatmt
inset: The critical width undergoes a crossover from1 to »  reported perfectly coincides. Dashed parts correspond to meta-
=2. The fitting curve is 3.4+ 0.74A/N, while the line is the Stable states. The rest of the daemtropy in the main body and
asymptote 0.74/N. energy and backbone size in the inssme from exhaustive enu-
meration of the ground states in the frustrated model and of first
excited states in the unfrustrated of@nly N=40,60) and they

purely statistical fluctuations will dominate the critical ones, . iqe.

leading to an exponent=2 in the scaling of the SAT prob-
ability. In the upper inset in Fig. 3 we show the width of the
critical region[34] as a function oN, together with the best Nnamical limit (N— ), we expect it to be zero foy<y. and
fit of the kind Ax B+ Cx~ 2. Notably the best fitting value finite for y= 1., consistently with a random first order phase
for B is perfectly compatible with 1, giving more evidence to transition predicted by the replica theory. As can be seen in
the crossover from critical fluctuations'£ 1) to statistical the inset of Fig. 4 the backbone size does not depend
ones p=2). strongly on the system size in the UNSAT phase. As dis-
In the main part of Fig. 3 we show the scaling function for cussed in Ref[7] the presence of a finite backbone is con-
the SAT probability. Note that the value at criticality is equal jectured to be the source of computational hardness in find-
to 0.5 up to the numerical precision. Slight deviations froming solutions at the SAT/UNSAT transition for both
perfect scaling appear in the> v, region. However, scaling complete and randomized local algorithms.
relations hold only close to the critical point and our data |n the y> vy, region the backbone size shows clear oscil-
perfectly collapse in all the ranges where the SAT probabiliations, due to finite size effects. At fixed energy the back-
ity is between 0.2 and 0.8. _ . bone size is a nondecreasing functionjgfbut it typically
The different kind of transition taking place at in the  gecreases when the energy jumps to a higher value. For finite
two versions of hSAT is reflecte_d in the behavior of thelrSystems such jumps, which are of ordeN lare particularly
ground-state entropiest y) shown in Fig. 4. Fory< y. both evident and induce observable fluctuations in the backbone.

entropies coincides and they have the an_alytical expressiqw,e expect these fluctuation to disappear in the thermody-
s(y)=In(2)(1—y) up to y.. For y> ., while the entropy namic limit.

of satisfiable hSAT decreases exponentially fast wittthe In satisfiable hSAT, once we consider only the lowest

solutions are more and more concentrated around the sup Gcal minima configurations just above the zero energy solu-
imposed ong in the frustrated version the entropy decrease;. 9 J gy

more slowly withy, indicating that the number of UNSAT ions (the so-called exciteq _stabewe finq that. they share
assignments minimizing the energy remains exponentialI)(f‘omple'[ely the same stgtlstlcal properties W',th the ground
large up toy> v, . stat'es of the corresponding frustrated hSAT, ie., the quel
At the SAT/UNSAT transition the solution space acquiresd€fined over the same random hypergraph with randomized
a backbone structure, with a finite fraction of the variablescouplings. We have performed a set of DP runs in satisfiable
that take the same value in all the solutions. Above the critihSAT similar to the ones used previously, with the additional
cal threshold a similar structure characterizes the grounéequirement of not considering the superimposed solution.
states. In the inset of Fig. 4 we report the results of exhausthe backbone size, the average energy, and the entropy of
tive ground-states enumeration on small systems, giving ththe excited states just above the solution are identical to
average size of the backbone and the average energy. Ithose measured on the ground states of the frustrated version
creasing the system size, the average energy per hyperlifkee Fig. 4. These results, together with some preliminary
converges to zero fop<y. and it becomes positive at, in  analytical findingg35], show in detail why a model without
a continuous way. The appearance of the backbone becomgaenched frustration behaves and can be modeled as having
sharper, increasing the system size and, in the thermodyandom sign interactions, i.e., like a spin glass model. Such a
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13 T T T T

AT In thg insgt of Fig. 5 we show the average logarithm of
satisfiable hSAT - . the running times needed by walk-SAT for finding a solution
in the satisfiable hSAT model. Analogously to DP the walk-
SAT costs undergo an easy-hard transitionyat Interest-
ingly enough, abovey. the computational cost for finding
) e T ] solutions remains quite high and does not decrease as in DP,
Davis-Putnam B where the additional constraints act as a pruning strategy in
the search process. In the hard satisfiable region standard
heuristic algorithms, like walk-SAT, get stuck in local
] minima and they are not able to exploit the large number of
constraints in order to reduce the searching space. In particu-
lar, the large scale structuf®(N)] of the hyperloops makes
them difficult to detect in polynomial time by a local search
0.4 0.6 08 v, 1 12 14 1.6 process which is dominated by the exponential branching
v process arising at each step when the tentative choices for the
variables are made. However, having at hand a model on
FIG. 5. The computational costs for finding a solution or prov-which new heuristic algorithms can be tested, such a search-
ing unsatisfiability with the_ I_Davis—_Putnam algorithm strongly in- ing optimization can hopefully be pushed far forward.
crease approaching the critical point. Fpe y they grow expo- A thorough analysis of the dependence of computational
nentially with the problem sgN. Insgt: The same computat!onal costs o gives the following overall picture. Foy< y4 the
fﬁjfa';?srﬁt;ﬁfﬁ:ﬁ;iﬁi%oé'éh% I‘gg;h can be runfor evenin .t s a linear function oN. For ye[yq,7.] the typical
DA ' cost increases as a power lawNfwith an exponent which
mapping is believed to play a particularly important role in should diverge iny.. For y=y. the costs are exponential in
spin glass theory of structural glasses, in which the onlyN.
source of frustration is geometricéle., dynamical Once
the Boltzmann temperatuigis introduced in the model, the
critical points of hSAT can be thought of as zero temperature
limits of critical lines in the [,y) plane. In spite of the In this paper we have studied a model for the generation
absence of any static frustration and of the existence of af random combinatorial problems, called hyper-SAT. In the
pure “crystalline” state(the spin configurations correspond- context of theoretical computer science such a model is sim-
ing to the satisfying assignmenthe spin system undergoes ply the completely balanced version of the famdUGSAT
several dynamical and static transitions as the temperature isodel, while in statistical physics it corresponds to a diluted
lowered. Both the crystalline state and the first excited stateg-spin model at zero temperature. We have studied two ver-
are never reached in any subexponential time and the systesions of the model, a frustrated one and an unfrustrated one.
stays for very large times in the metastable stéties same Increasing the density of interactions= M/N, the model
happens in the frustrated versjon undergoes two transitions. The first one is of purely dynami-
In Fig. 5 we report data concerning the computationalcal nature whereas the second one is static. Such phase tran-
costs for finding a solution in the satisfiable hSAT and forsitions have a straightforward interpretation in terms of the
proving satisfiability for the frustrated hSA/B6]. For both  structure of the underlying hypergraphs, leading to a very
algorithms(DP and walk-SAY and in the whole range of,  simple connection between theoretical computer science and
we have measured the logarithm of the running time avergraph theory, and statistical physics of random systems.
aged over thousands of samples of different sizes. The choice The locations of phase boundaries can be computed ex-
of analyzing the averaged logarithm instead of the logarithnactly within the RS replica formalism, leading tey
of the average is dictated by the presence of fat tails in the=0.818 andy,=0.918. We expect the replica results to be
running time distributions, even in the<vy, region. The computable also by more rigorous probabilistic methods.
averaged logarithm provides directly the information on the Exploiting a global solution method which is polynomial
most probable cost. in the problem size, we have been able to study very large
The main body of the figure displays the DP computa-problems, determining with high precision critical points and
tional costs for proving satisfiability in hRSAT and for finding critical exponent, and a crossover from critical fluctuations to
the satisfying assignment in the satisfiable hS@iven the  statistical ones has been measured.
same underlying hypergraph structur8oth costs show a We have found that the computational costs for finding a
sharp easy-hard transition at., where an enormous in- solution to a typical problem or to prove that it is unsatisfi-
crease in the typical running times take place. ery.  able using only local search methods undergoes easy-hard
both costs obviously coincide and they increase as a powdransitions atyy and y.. The growth of the costs with the
law of N, the only effect ofy, being a change of the expo- problem sizeN is linear up toyy, is polynomial inN in the
nent from 1 to a large value which eventually divergeyat  rangeys<7y<vy., and finally it becomes exponential &
For y>1y., the computational costs remain very high, i.e.,abovey.. The above scenario has been checked for both
(In[7(y)Dca(y)N, with an exponentr slowly decreasing as complete and incomplete local algorithms, thanks to the ex-
1/y [37]. istence of a halting criterion in the unfrustrated version of
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VII. CONCLUSIONS
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hyper-SAT where at least one solution is guaranteed to exisbur analysis of hSAT can be extended to NP-complete prob-
The use of this model as a benchmark for heuristic algolems.
rithms may result in a good improvement of their perfor-
mances in the phqse where many local minima are present. ACKNOWLEDGMENTS
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